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In this paper, the input power ¯ow from a cosine harmonic circumferential
line force into an in®nite cylindrical ¯uid-®lled shell with periodic sti�eners is
studied. The sti�eners are idealized as line attachments capable of exerting line
forces which relate to the sti�eners and the shell. The motion of the shell and
the pressure ®eld in the contained ¯uid are described by the FluÈ gge thin shell
theory and the Helmholt equation respectively. A periodic structure theory,
space-harmonic analysis, is used to investigate this ¯uid-®lled periodic
structure. The concept of the vibrational power ¯ow is introduced and the
in¯uence of the parameters of the sti�eners upon the results is also dscussed.

# 1999 Academic Press

1. INTRODUCTION

Many engineering structures, such as multi-span bridges, stiffened plates and the
shells in aerospace and ship structure, pipelines, can be treated as periodic
structures. The vibration of these periodic structures has been investigated by
using various methods, such as receptance methods, transfer matrices, direct
solutions, space-harmonic analysis, energy method and the method of phased
arrays of forces and moments.
Since the stiffened cylindrical shells, an important kind of periodic structures,

are widely used in many industrial and defense ®elds, the dynamic response of
periodic shells is an important topic and has been analyzed by several authors.
Lin and McDaniel [1] used the transfer matrix method to study both the free
and forced vibrations of a periodic shell. Using direct solutions, Mead and
Bardell [2, 3] studied the free wave motion in a thin cylindrical shell with
periodic stiffening either around the circumference or along the length. The
propagation constant curves were obtained for a particular circumferential
stiffened shell. Zhang and Zhang [4] combined the theory of periodic structures
and the power ¯ow analysis, and discussed the power ¯ow input and transmitted
along the shell.
As the periodic shell is ®lled with ¯uid, due to the in¯uence of the contained

¯uid, the number of the coupling co-ordinates between adjacent periodic element
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will be in®nite. Then the above mentioned methods are no longer suitable and
an alternative method has to be employed to study this ¯uid coupled periodic
structure system. The studies by Mead [5] demonstrated that the ¯exural wave in
a periodic beam must be regarded as a wave group. Accordingly the response to
a converted harmonic pressure can be regarded as an in®nite sum of space
harmonics and the effects of ¯uid loading on the forced harmonic response can
easily be included by using space-harmonic analysis.
The method of space harmonics was adopted by Mead and Pujara [6] to

investigate the response of periodically supported beams due to a spatial and
temporal harmonic pressure in the form of a particular series of space harmonic.
Mace [7] considered the vibration of and sound radiation from a two-
dimensional ¯uid-loaded plate periodically stiffened in one direction and excited
by a convected pressure ®eld of plane harmonic waves. Mace [8] proceeded to
discuss the same periodic plate excited either by a line force parallel to the
stiffeners or by a point force at an arbitrary location.
The concept of vibrational power ¯ow is very valuable in the analysis of noise

and vibration of a shell. Without considering the in¯uence of stiffeners, Fuller [9]
investigated the forced input mobility of an in®nite elastic circular cylindrical
shell ®lled with ¯uid. The spectral equations of motion of the shell±¯uid system
and the method of residues are employed to evaluate the mobility, and their
physical interpretation is also discussed. Zhang and Zhang [4] introduced the
concept of power ¯ow into the analyss of periodic shells, studied the input
vibrational power ¯ow from a cosine harmonic circumferential line force and the
power transmitted by internal forces of the shell wall. But the in¯uence of the
¯uid was not considered in their research.
In the analysis in this paper, both the in¯uence of the stiffeners and that of the

contained ¯uid upon the elastic cylindrical shell are considered. Space-harmonic
analysis is adopted to investigate the dynamic response of an in®nite ¯uid-®lled
shell with periodic circumferential stiffeners. The simple harmonic motion of the
shell and the pressure ®eld in the ¯uid are described by FluÈ gge's dynamic shell
equations and Helmholtz's equation respectively. Firstly, the response of the
structure to a convected harmonic pressure is given. Then, the response to a
cosine harmonic circumferential line force is investigated. Moreover, the input
vibrational power ¯ow into the structure is given and the in¯uence of the
stiffeners' parameters on the results is also discussed.

2. RESPONSE OF A PERIODICALLY STIFFENED SHELL TO CONVECTED
HARMONIC PRESSURE

An in®nite cylindrical thin-walled ¯uid-®lled shell reinforced with equally
spaced ring stiffeners shown in Figure 1 is considered. Let R and h be the mean
radius and thickness of the shell. Let E, m and r be the Young's modulus, the
Possion's ratio and the density of the shell material. The density of the contained
¯uid is r0 and the sound velocity in it is c0. The ring stiffeners have uniform
rectangular section with width b and height d, attached at x=mL (L is the
stiffener spacing, m=0, 21, 22� � �). The connections are rigid, so that, at each
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line of attachment, the shell and stiffener have the same linear velocity and
angular velocity. The stiffeners may exert axial force, shear, and moments on the
shell. To simplify the problem, it is assumed that the stiffeners are located on the
outer wall of the shell, so that their interaction with the contained ¯uid (air) can
be ignored.

2.1. EQUATIONS OF MOTION OF THE PERIODIC SHELL

The shell is excited by a harmonic pressure p, expressed as

p�x, y, t� � p � p0 exp�iotÿ ikx x� cos�ny� �1�
where o is the circular frequency, kx is the axial wavenumber and n is the
circumferential modal number.
For the sake of brevity, let the term eiot be excluded from now on. The

cylindrical co-ordinate system (x, y, r) is adopted in the analysis. The
simultaneous vibrations of the shell are described by FluÈ gge's shell equations [9]

L1�u, v, w� � fu, L2�u, v, w� � fv, L3�u, v, w� � fw: �2�
where u, v, and w are the displacements of the shell in the direction of the x-, y-
and r-axes respectively. Li denote linear different operators which are not given
here for the sake of brevity. fu , fv and fw are the external loads exerted on the
shell wall in the direction of the x-, y- and r-axes respectively, which are given by
the equations

fu � D
X1
ÿ1

Fu,md�xÿmL�, fv � D
X1
ÿ1

Fv,md�xÿmL�, �3a, b�

fw � D pÿ pf �
X1

m�ÿ1
Fw,md�xÿmL� �

X1
m�ÿ1

Mmd 0�xÿmL�
( )

, �3c�

D � R2�1ÿ m2�=�Eh�, �4�
where p is the applied pressure load, pf is the ``acoustic'' pressure exerted by the
contained ¯uid, Fu,m , Fv,m , Fw,m and Mm are the sideward forces or moments of
the mth stiffener acting on the shell and d is the Dirac delta function.

Figure 1. Periodically stiffened shell ®lled-with ¯uid.
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The pressure ®eld in the contained ¯uid satis®es the acoustic wave equation in

cylindrical co-ordinates,

Dpf � k20pf � 0, �5�
where k0 is the free wave number in the contained ¯uid and k0=o/c0.
To ensure that the ¯uid remains in contact with the shell wall, the ¯uid radial

displacement and the shell radial displacement must be equal at the interface of

the shell inner wall and the ¯uid. The coupling condition is then wfluid � wshell at

r=R.

Taking the Fourier transform of equations (2) and (5) and applying the

coupling condition, the following equations are obtained:

�L363�
~U
~V
~W

8<:
9=; �

~Fu, shell
~Fv, shell

~Fload � ~Fw, shell � ~Mshell

8<:
9=;, �6�

where, ~U, ~V and ~W are the spectral displacements, matrix L is symmetric,

�L363� �
l2 � a0 b0l c0l3 � d0l

e0l2 � f 0 g0l2 � h 0

j 0 � k 0l2 � l 0l4 ÿ FL

24 35 �7�

~Fload �
�1
ÿ1

Dp0 e
ikx eÿikxx dx � Dp0d�kÿ kx�, �8�

~Fu, shell � D

�1
ÿ1

X1
m�ÿ1

Fu,md�xÿmL� eikx dx � D
X1

m�ÿ1
Fu,m eikmL, �9a�

~Fv, shell � D

�1
ÿ1

X1
m�ÿ1

Fv,md�xÿmL� eikx dx � D
X1

m�ÿ1
Fv,m eikmL, �9b�

~Fw, shell � D

�1
ÿ1

X1
m�ÿ1

Fw,md�xÿmL� eikx dx � D
X1

m�ÿ1
Fw,m eikmL, �9c�

~Mshell � D

�1
ÿ1

X1
m�ÿ1

Mmd 0�xÿmL� eikx dx � ÿiDkx
X1

m�ÿ1
Mm eikmL: �9d�

In equation (7),

l � kxR, a 0 � ÿ�1ÿ m��1� k�n2=2� O2, b 0 � �1� m�n=2, c 0 � ÿk,
�10a--d�

d 0 � mÿ k�1ÿ m�n2=2, e 0 � ÿ�1ÿ m��1� 3k�=2, f 0 � n2 ÿ O2, �10e--g�
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g 0 � ÿ�3ÿ m�kn=2, h 0 � n, j 0 � 1� k�n2 ÿ 1�2 ÿ O2, k 0 � ÿ2n2k, �10h--k�

l 0 � k, O2 � rR2o2�1ÿ m2�=E, k � h2=12R2, �10l--n�
where O is the non-dimensional frequency, FL is the ¯uid loading term due to
the coupling between the structure and the ¯uid, expressed as follows [9],

FL � O2�r0=r��R=h��Jn�krsR�=�krsR�Jn�krsR�, �11�
where Jn( ) is a Bessel function of order n, krs �2

���������������������������
�k0�2 ÿ �kx�2

q
is the radial

¯uid wavenumber and a prime denotes differention with respect to the argument
krsR.
In equations (9), the forces in the stiffeners acting on the outer shell wall

satisfy the periodicity relation since the structure is periodic. Then,

Fu,m

Fv,m

Fw,m

Mm

8>><>>:
9>>=>>; � eÿimkxL

Fu, 0

Fv, 0

Fw, 0

M0

8>><>>:
9>>=>>;: �12�

By using the Poisson sum formula [7],X1
m�ÿ1

eÿikxmL eikmL � 2p
X1

m�ÿ1
d�2mp� �kx ÿ k�L� �13�

The following equations can be obtained

~Fu, shell � 2pDFu, 0

X1
m�ÿ1

d�2mp� �kx ÿ k�L�, �14a�

~Fv, shell � 2pDFv, 0

X1
m�ÿ1

d�2mp� �kx ÿ k�L�, �14b�

~Fw, shell � 2pDFw, 0

X1
m�ÿ1

d�2mp� �kx ÿ k�L�, �14c�

~Mshell � ÿipDkxM0

X1
m�ÿ1

d�2mp� �kx ÿ k�L�: �14d�

Let matrix I be the inverse of matrix L (equation (7)), then the spectral
displacements can be obtained from equation (6) as follows:

~U
~V
~W

8<:
9=; � I11 I12 I13

I22 I23
I33

24 35 ~Fu, shell
~Fv shell

~Fload � ~Fw, shell � ~Mshell

8<:
9=;, �15�
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where, I11, I12, I13, I22, I23 and I33 can be written in terms of the elements of

matrix L from matrix theory.

Taking the inverse transform of equations (15), the shell displacements are

obtained as

u�x�
D
� P0

2p
I13�kx� exp�ÿikxx� � Fu, 0

X1
m�ÿ1

�exp�ÿikmx�I11�km��

� Fv, 0

X1
m�ÿ1

�exp�ÿikmx�I12�km�� � Fw, 0

X1
m�ÿ1

�exp�ÿikmx�I13�km��

ÿ iM0

X1
m�ÿ1

�exp�ÿikmx�kmI13�km��, �16a�

v�x�
D
� P0

2p
I23�kx� exp�ÿikxx� � Fu, 0

X1
m�ÿ1

�exp�ÿikmx�I12�km��

� Fv, 0

X1
m�ÿ1

�exp�ÿikmx�I22�km�� � Fw, 0

X1
m�ÿ1

�exp�ÿikmx�I23�km��

ÿ iM0

X1
m�ÿ1

�exp�ÿikmx�kmI23�km��, �16b�

w�x�
D
� P0

2p
I33�kx� exp�ÿikxx� � Fu, 0

X1
m�ÿ1

�exp�ÿikmx�I13�km��

� Fv, 0

X1
m�ÿ1

�exp�ÿikmx�I23�km�� � Fw, 0

X1
m�ÿ1

�exp�ÿikmx�I33�km��

ÿ iM0

X1
m�ÿ1

�exp�ÿikmx�kmI33�km��, �16c�

Then, the displacements at x=0 are given as

1

D
u�0� � 1

2p
p0I13�kx� � Fu, 0

X1
m�ÿ1

I11�km� � Fv, 0

X1
m�ÿ1

I12�km�

� Fw, 0

X1
m�ÿ1

I13�km� ÿ iM0

X1
m�ÿ1

�kmI13�km��, �17a�
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1

D
v�0� � 1

2p
p0I23�kx� � Fu, 0

X1
m�ÿ1

I12�km� � Fv, 0

X1
m�ÿ1

I22�km�

� Fw, 0

X1
m�ÿ1

I23�km� ÿ iM0

X1
m�ÿ1

�kmI23�km��, �17b�

1

D
w�0� � 1

2p
p0I33�kx� � Fu, 0

X1
m�ÿ1

I13�km� � Fv, 0

X1
m�ÿ1

I23�km�

� Fw, 0

X1
m�ÿ1

I33�km� ÿ iM0

X1
m�ÿ1

�kmI33�km��, �17c�

where

km � kx � 2mp=L: �18�

2.2. BOUNDARY CONDITIONS BETWEEN THE SHELL AND THE STIFFENERS

Once the forces and moments of the 0th stiffener in equation (17) are given,
the shell response to the applied pressure load p(x, y, t) can be solved.
Expressions for the reaction forces and moments of the stiffeners can be
obtained by equating the displacements and the slopes of the shell and the ring
stiffener.
The reaction forces in the line circumferential stiffener at x=0 can be

expressed as follows:

Fw, 0 � ÿK1w�0� ÿ K2v�0�, Fv, 0 ÿ K2w�0� � K3v�0� �19a, b�

Fu, 0 � K4u�0� � K5 ÿ e1
R
K4

� �
R
@w

@x
�0�

� �
� K4u�0� � K5 ÿ e1

R
K4

� �
�ÿikxRw�0��,

�19c�

M0 � K5u�0� � K6 ÿ e1
R
K5

� �
R
@w

@x
�0�

� �
� K5u�0� � K6 ÿ e1

R
K5

� �
�ÿikxRw�0��,

�19d�
where e1 is the distance from the midsurface of the shell to the geometric center
of stiffener. K1, K2, K3, K4, K5 and K6 are given in the Appendix A.

2.3. SOLUTION OF THE SHELL RESPONSE

Introducing equations (19) into (17), the shell displacement at x=0 can be
obtained in matrix form as:
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K
u�0�
v�0�
w�0�

24 35 � K11 K12 K13

K21 K22 K23

K31 K32 K33

24 35 u�0�
v�0�
w�0�

24 35 � Fu

Fv

Fw

24 35 �20�

where the elements of matrix K can be easily obtained and thus not given here
for the sake of brevity, and where

F u � 1

2p
p0I13�kx�, F v � 1

2p
p0I23�kx�, F w � 1

2p
p0I33�kx�: �21a--c�

Let matrix Q be the inverse of matrix K, then the displacements of the
stiffened shell at x=0 can be obtained as follows

u�0�
v�0�
w�0�

24 35 � Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

24 35 F u

F v

F w

24 35 �22�

where the elements of matrix Q can be written in terms of the element of matrix
K from matrix theory and not given for shortness.
Once the displacements of the stiffened shell at x=0 are given, the reaction

forces and moments of the 0th stiffener can be obtained from equations (19),
and thus the displacements of the stiffened shell u(x), v(x) and w(x) can be
obtained from equations (16). The expressions are very complex and thus not
given here.

3. RESPONSE OF THIS PERIODIC SHELL TO A COSINE HARMONIC
CIRCUMFERENTIAL LINE FORCE

Any time±harmonic excitation can be decomposed into convected harmonic
pressure by taking the Fourier transform.
According to the theory of Fourier transform,

d�x� � 1

2p

�1
ÿ1

eÿikx dx �23�

For a cosine harmonic circumferential line force F � p0d�x�eiot cos�ny�, it can
be written as the form of convected pressure where p � p0 e

iotÿikxx cos�ny� as

F � 1

2p

�1
ÿ1

p dkx: �24�

Then, from equation (22), the response at x=0 of this periodic structure to a
cosine harmonic circumferential line force can be expressed as

w�0� � 1

2p

�1
ÿ1
�Q31F

u �Q32F
v �Q33F

w�dkx: �25�

The response of this system at any other position w(x) can also be obtained
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and the response to any other exciting force can also be obtained in the same
manner.
In order to obtain the shell response, the intergal in equation (25) must be

evaluated. In equation (25), the elements of matrix Q can be written in terms of
the element of matrix K in equation (20), and the element of matrix K can be in
terms of the in®nite sumsX1

m�ÿ1
I11�km�,

X1
m�ÿ1

I12�km�, . . . ,
X1

m�ÿ1
I33�km�

and X1
m�ÿ1

�kmI13�km��,
X1

m�ÿ1
�kmI23�km��,

X1
m�ÿ1

�kmI33�km��

in equation (17).
In [7] Mace has pointed out that, when ¯uid loading is neglected, the in®nite

sums for a stiffened plate (similar to the in®nite sums for a stiffened shell in
equation (17)) can be evaluated by using the Poisson sum formula, but the
derivation is very complex and intricate. These in®nite sums can also be obtained
by using the numerical method and results show good agreement between the
numerical values and the accurate values. When the effects of the ¯uid loading is
considered, these in®nite sums cannot be evaluated explicitly and must be
evaluated aproximately by using the numerical method.
Once these in®nite sums in equation (17) are obtained, the elements of matrix

Q in equation (25) can be calculated easily and thus the intergal in equation (25)
can be evaluated.
A integral for a stiffened plate (similar to the integral for a stiffened shell) has

been discussed by Mace [8]. When ¯uid loading is neglected, the integral can be
evaluated by contour integration. When the effects of ¯uid loading are included,
the integral cannot be evaluated explicitly and it is probably easiest to deal with
it by numerical integration. In this article an integrated numerical method
discussed in reference [10] is employed to calculate the intergral. This method is
to integrate numerically along the pure imaginary axis of the complex
wavenumber domain. Some damping is introduced into the shell material in
order to avoid singularities in the integrand function along the integration path.
Damping is introduced into the shell material by modifying the Young's
modules E to be complex such that E 0 � E�1ÿ iZ�. The solution of free
wavenumbers of this system is unnecessary and the method is simple. Moreover,
this method is found to provide suf®cient accuracy and the value of loss factor Z
has an insigni®cant effect on the ®nal results.

4. POWER FLOW ANALYSIS

When a harmonic force F � F0 e
iot is applied radially to a point of the shell

wall, a radial velocity @w=@t � _w � _w0 e
iot�j is generated at the same point. The

input vibrational power ¯ow from this point is de®ned as in reference [10]
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Ppoint � 1

T

�T
0

F _w dt � 1
2F0 _w0 cosj � 1

2RefF0� _w�
g, �26�

where j is the phase difference and 
 denotes the complex conjugate.
Then the total input power ¯ow for a line harmonic force applied in the radial

direction of the shell is obtained as follows:

Pline �
�2p
0

PpointR dy � Znp Refio�F0w�
g, �27�

where Zn=0=1 and Zn>0=0�5.
The non-dimensional power ¯ow is de®ned as:

P
0
line � Pline

����������������������������
rER2�1ÿ m2�

q
=�F2

0p�: �28�

5. RESULTS AND DISCUSSION

In order to make sure that the derivation and analysis are correct, an
unstiffened cylindrical ¯uid-®lled shell is investigated both by this method and
by the method discussed in reference [9]. The input power ¯ow is shown in
Figure 2. It shows that the results obtained by this method is almost the same as
those produced in reference [9]. Hence a conclusion can be drawn that the
method in this article is correct.

Figure 2. Input power ¯ow into a shell ®lled-with water for n=0; ÐÐ, calculated by the
method in [9]; � � � � �, calculated by this method.
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A periodically stiffened cylindrical ¯uid-®lled shell was considered; the
following parameters of the coupled system have been used in the calculations,
h=0�02R, m=0�3, r=7850 kg/m3, E=2�0761011 N/m2 and the density of the
contained ¯uid r0=1000 kg/m3. The stiffener has a rectangular cross-section
(width b=0�04R and height d=0�04R). The spacing between adjacent stiffeners
is L=0�4R. The material parameters of the stiffener are the same as those of the
shell.

5.1. INFLUENCE OF STIFFENERS

Figure 3 shows the non-dimensional input power ¯ow P
0
line plotted against the

non-dimensional driving frequency O for this stiffened ¯uid-®lled shell excited by
a cosine harmonic circumferential line force of circumferential mode order n=5.
In order to investigate the in¯uence of the stiffeners, the results of a shell
without stiffeners are also plotted.
In three frequency bands, 0�1<O< 0�14, 0�4<O< 0�64 and 1�47<O< 1�6, the

power input into the stiffened shell is much less than that into a shell without
stiffeners. These frequency bands are named non-propagating bands. This means
that the stiffeners greatly in¯uence the input power ¯ow in these frequency
bands. The power ¯ow achieves its maximum at the ®rst lower bounding
frequency, the second lower and upper bounding frequency. At the ®rst upper
bounding frequency and the third lower bounding frequency, the power ¯ow for
the stiffened shell is much less than that for an unstiffened shell.

5.2. INFLUENCE OF STIFFENER SPACING

The results for a shell with stiffeners of different spacing are given in Figure 4.
The spacing between adjacent stiffeners in Figure 4(a) is L=0�8R, twice that

in the original model. There are ®ve frequency bands in which the power input

Figure 3. Input power ¯ow into the stiffened shell ®lled-with water for n=5; ÐÐ, stif-
fened shell; � � � � �, non-stiffened shell.
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into the stiffened shell is much less than that into a shell without stiffeners.
When the results of Figure 4(a) are compared with those of Figure 3, it is found
that the frequencies of the ®rst, third and ®fth non-propagating bands in Figure
4(a) correspond to those of the ®rst, second and third non-propagating bands in
Figure 3 respectively. But the bands in Figure 4(a) are narrower than those in
Figure 3. The second and fourth non-propagating bands in Figure 4(a) are in the
®rst and second propagating bands in Figure 3.
The stiffener spacing in Figure 4(b) is L=0�2R, half of the original model.

Only two non-propagating bands exist and the bands are wider than those in
Figure 3. It means that once the frequency of the external force is given, the
most appropriate stiffener spacing can be chosen to control the input power
¯ow.

5.3. INFLUENCE OF STIFFENER STIFFNESS

The results obtained for modi®ed shell models with stiffeners of different
stiffness are plotted in Figure 5. The parameters of the stiffeners in Figure 5(a)
are, width b=0�05R and height d=0�05R. In Figure 5(b), width b=0�03R and
height d=0�03R.
When the results of Figure 5(a) are compared with those of Figure 3, it can be

found that the input power ¯ow is similar. There are also three non-propagating
bands. Each bounding frequency in Figure 5(a) is approximate to the
corresponding bounding frequency in Figure 3. The only difference is that the
non-propagating bands in Figure 5(a) are wider than those in Figure 3. The
results in Figure 5(b) are similar (though the non-propagating bands are
narrower) and thus not discussed here. Then, from the point of vibration
control, it seems useful to increase the stiffener stiffness.

5.4. INFLUENCE OF CIRCUMFERENTIAL ORDER NUMBER

The results obtained for mode order n=1 and n=10 are shown in Figure
6(a) and Figure 6(b). For mode order n=1, the power ¯ow of the stiffened shell
is similar to that of the shell without stiffeners. For mode order n=10, there are
also three non-propagating bands. These bands are much wider than those in

Figure 4. In¯uence of the stiffener spacing on the input power ¯ow for n=5; ÐÐ,
stiffened shell; � � � � �, non-stiffened shell. (a) L=0�8R; (b) L=0�2R.
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Figure 3. At each lower bounding frequency, the input power ¯ow achieves its
maximum; at each upper bounding frequency, the input power ¯ow equals zero.
At the propagating frequency bands, the difference between the results with
stiffeners and those without stiffeners is large too. Therefore, it can be concluded
that the stiffener can control the input power effectively when the circumferential
mode order is high.

6. CONCLUSION

By adopting a periodic structure theory, space-harmonic analysis method, a
periodically stiffened cylindrical ¯uid-®lled shell has been investigated. The input
power ¯ow from a cosine harmonic circumferential line force of this coupled
system has been derived and the results have been obtained for a periodic shell
®lled with water.
There are propagating bands and non-propagating bands. These bands are

greatly in¯uenced by stiffener spacing, stiffener stiffness and the circumferential
mode order. Stiffener spacing will in¯uence the number of these bands and the
bounding frequencies to a great extent. The non-propagating bands widen with

Figure 5. In¯uence of the stiffener stiffness on the input power ¯ow for n=5; ÐÐ, stif-
fened shell; � � � � �, non-stiffened shell. (a) b= d=0�05R; (b) b= d=0�03R.

Figure 6. In¯uence of the circumferential order number on the input power ¯ow; ÐÐ, stif-
fened shell; � � � � �, non-stiffened shell. (a) n=1; (b) n=10.



544 M. B. XU ET AL.

an increase in stiffener stiffness. For mode order n=1, the stiffener has little
in¯uence on the input power ¯ow. For high mode order, the stiffener can control
the input power effectively. From the analysis, one can conclude that once the
external load is known, the most appropriate stiffener parameters can be chosen
to minimize vibration.
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APPENDIX A: FORCES AND MOMENTS OF A RING STIFFENER

Omitting shear deformation and moment of inertia, the equation of motion of
a ring stiffener is
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where R1=R+ e1; A= bd is the area of stiffener cross-section; I and �I are

moments of gyration; Ip � I� �I is the polar moment of gyration; Jp is the

constant of twist of cross-section; r1 is mass density of stiffener material; E1 and

G1 are module of elasticity and shear module of stiffener material, respectively;

j � @w=@x.
In order to consider the in¯uence of eccentricity, one may express the

displacements at the center of the ring in terms of displacement at midsurface

u� � uÿ e1j, v� � V 1� e1
R

� �
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R

@w

@y
, w� � w, j� � j, �A:2�

where e1 is the distance from the midsurface of shell to the geometric center of

stiffener. When e15R, the second equation is deduced to v*= v.

When the shell vibration is in the nth mode, the ring stiffener vibrations in the

same mode, then

�u� v w j�T � eiot�u�d cos ny va sin ny wa cos ny ja cos ny�T, �A:3a�

�Fu Fv Fw M�T � eiot�Fua cos ny Fva sin ny Fwa cos ny Ma cos ny�T �A:3b�
From equations (A.1, A.2, A.3) with eiot and cos ny, sin ny omitted, the forces

and moments in the ring stiffener can be expressed as follows:
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APPENDIX B: LIST OF SYMBOLS

A area of stiffener cross-section
b stiffener width
c0 sound velocity in the contained ¯uid
d stiffener height
D membrane stiffness
E, E1 Young's modulus of shell material or stiffener material
e1 distance from midsurface of shell to geometric of stiffener
F applied line force
fu , fv , fw external loads exerted on the shell
Fu , Fv , Fw , M forces or moment in the stiffener
FL ¯uid loading term
G1 shear modulus of stiffener material
h shell wall thickness
i

�������ÿ1p
I, �I moments of gyration of stiffener cross-section
Ip= I+�I polar moment of gyration of stiffener cross-section
Jp constant of twist of stiffener cross-section
Jn Bessel function of order n
k0 free wavenumber
kx axial wavenumber
krs radial wavenumber
L stiffener spacing
n circumferential modal number
p applied harmonic pressure
Ppoint input power from a point force
Pline input power from a line force
P
0
line non-dimensional input power from a line force

R shell mean radius
R1=R+ e1 radius of geometric center of stiffener
u, v, w, @w/@x shell displacements
x, y, r cylindrical co-ordinate
r0, r, r1 density of ¯uid, shell material or stiffener material
Z loss factor
m Poisson's ratio
o circular frequency
O non-dimension frequency
l non-dimension wavenumber
d Dirac delta function

Superscripts

 complex conjugate
0 differentiation
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